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Abstract: Features of the current spin-orbit induced magnetic dynamics in multilayer nanostructures with nonmagnetic 

heavy metal layers possessing by a strong spin-orbit interaction are studied. These structures include ferromagnetic (F) 

(antiferromagnetic AF)/normal metal (N) nanostructures based on both conductive and insulating magneticsand heavy normal 

metals (e. g., FeCoB/Ta, YIG/Pt, Nio/Pt). The spin Hall effect of the conversion of an incoming charge current into a transverse 

(with respect to the charge current) spin current induces a spin-transfer torque and magnetic dynamics including a magnetic 

precession and switching. The magneto-dynamic effect of a spin current pumping generation together with the inverse spin 

Hall effect of conversion of the spin current into the incoming charge current provide the influence of the magnetic dynamics 

on the incoming charge current. These feedforward and feedback between the incoming charge current and the magnetic 

dynamics can be the basis for the spin-orbit driven self-sustained auto-oscillations of a magnetic order in the nanostructures. It 

is shown that the considered magnetic nanostructures possess by properties of controlled microwave radiation attaining tens 

THz in the antiferromagnetic case. Magnetic-induced changes of the electric resistance in the mentioned nanostructure are 

considered. 
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1. Introduction 

There is much current interest in dynamical processes in 

magnetically ordered systems both from scientific and 

technological viewpoints. The special interest is related to the 

problem of the intercoupling between a spin-polarized 

electron current and the magnetic dynamics in multilayer 

magnetic nanostructures that can be exhibited in such 

phenomena, as magnetic switching and a sustained 

precession of magnetic order vectors 

The interrelation between the spin-polarized current and 

magnetic order vectors in magnetic multilayer nanostructures 

[1-3], permitting their mutual control [4], constitutes the 

basis of the operation of novel nano-devices [5], some of 

them with properties of a magnetic random-access memory 

(MRAM) [6], magnetic logic and coherent microwave 

radiation sources that presents considerable fundamental and 

application interest [7, 8]. The operation of these devices can 

be based on both the spin-polarized current-induced and the 

current spin-orbit-induced magnetic dynamics including 

magnetic switching and precessiong [9-11]. Such phenomena 

have real potential for application in systems of high-speed 

magnetic processing information and high frequency fine-

tuned GHz and THz electromagnetic radiation. 

The intercoupling between a spin current and magnetic 

state in magnetic nanostructures constitutes the basis of the 

current-induced manipulation by magnetic dynamics and 

vice-versa, i.e. the magnetic state-induced manipulation by 

the spin current [12-15]. The spin current can be converted 

from an incoming charge current under internal effective 

magnetic fields of interactions of a different origin (including 

s-d exchange and spin-orbit interactions) with corresponding 

features of the action of a spin torque on the magnetic states 

and their dynamics. Inducing magnetic dynamics such the 

spin torque can causes switching and precession of the 

magnetic order vectors (including ferro- and 
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antiferromagnetic orders) in magnetic nanolayers with 

ferromagnetic (FM) and antiferromagnetic (AF) interactions. 

The frequency of the magnetic dynamics is determined by 

the magnitude of magnetic exchange interaction, which is the 

largest for antiferromagnetic materials. The prospect of 

obtaining the technological magnetic nanostructures with low 

threshold incoming currents, low power consumption and 

controlled high frequency operation is related to utilization of 

the spin-orbit effects of the spin polarization and magnetic 

nanostructures with AF exchange interactions. 

Generally, the spin-orbit interaction includes the bulk spin 

Hall effect (SHE) [12, 13] of the transverse (relatively to an 

incoming current) deflection of electrons with opposites 

spins in opposite sides and the interface (two-dimensional) 

Rashba spin-orbit(RSO) effect [14, 15] of the spin splitting of 

an electron disperse along an electron wave vector. The 

impact of the spin current on the magnetic states realizes via 

the spin torque T consisting of so-called a field-like and 

dumping-like part ||T  and ⊥T , respectively, which are related 

to the effects of magnetic order switching and precession 

dumping or antidumping. The field-like torque ||T originates 

predominantly by the spin-orbit coupling at the interface in 

combination with the perturbation of the electron distribution 

function. The torque ⊥T  originates predominantly by the 

perturbation of electronic states by the applied electric field. 

The current spin-orbit controlled microwave magnetic 

dynamics is realized for nanostructures composed of a heavy 

metal nanolayer (for instance, Pt, Ta) possessing by the 

strong enough spin-orbit interaction and the adjacent active 

magnetic nanolayerwith a strong exchange interaction 

attaining maximum values of the order of tens THz in the AF 

cases. For multisublattice magnetic structures (for instance, 

for AF) a general magnetic dynamics is a combined effect of 

dynamics of each of magnetic sublattices coupled by the 

strong exchange interaction. 

The interconnection between the incoming charge 

current and magnetic dynamics occurs in the mentioned 

case via the spin current and the spin transfer effect for the 

each sublattice singly. In such the magnetic systems the 

simultaneous action of SHE and the inverse SHE (of the 

transverse to spin current charge current) results in the 

feedback between the incoming charge current and the 

magnetic dynamics. This provides sustained steady-state 

spin torque magnetic oscillations, convertible via a 

magnetoresistance effect into an ac voltage and the 

current-driven high frequency radiation. 

The paper is organized as follows. In section 2, the 

conversion of an incoming current into the spin 

currentunder internal effective bias fields of the exchange 

interactions of a different origin in magnetic nanostructures 

is studied. In Section 3, the spin and charge density 

diffusions in the bilayer magnetic structures with the strong 

spin-orbit interaction are considered in the framework of 

nonlinear kinetic leading to renormalization of parameters 

of a magnetic precession. Section 4 is devoted to dynamic 

feedback in F/SH nanostructures. It is shown that spin 

pumping and spin transfer torques as two reciprocal 

processes result in a dynamical feedback effect 

interconnecting energy dissipation channels of both 

magnetization and current. In Section 5, features of spin 

pumping and spin-transfer torques as two reciprocal 

phenomena are considered in AF based nanostructures. In 

Section 6, the current-induced magnetic dynamics is 

considered in the bilayer nanostructures composed of an 

insulating AF and adjusted heavy normal metal with the 

SHE. 

2. The Spin Polarization and Spin 

Current 

The electric control of the magnetic dynamics in the 

mentioned magnetic nanostructures occurs through the 

exchange interaction between the spin current and a localized 

magnetic order. The spin current induces the spin torque 

causing magnetic dynamics in the form of the precession or 

switching of the magnetization in Fs and AF order in AFs 

[16-18]. The magnitude of the spin torque is determined by 

the mechanism of the conversion of incoming charge current 

into the spin current interacting with the magnetic order via 

an exchange interaction. The conversion of the incoming 

electric current into spin polarization state in the 

ferromagnetic nanostructures can be produced by the 

effective bias field of the s-d exchange interaction in the 

magnetic layer acting as a spin polarizer. The spin 

polarization occurs as the results of the spin splitting of the 

electron band spectrum on the two branches with and without 

their intersection by the Fermi level (Fig. 1) (see [11]) that 

correspond two (Fig. 1b) and single (Fig. 1c) channel 

conductions of the electrons with different spin projections 

relatively to the magnetization. 

In the usual two-channel case, the majority electros with 

the spin projection parallel to the magnetization, occupy the 

one conduction channel and the minority electrons with the 

antiparallel spin projection occupy the another conduction 

channel. This results in the incomplete spin polarization of 

the electric current. In the single-channel case, which is 

realized for magnetic semimetals [11], the conduction 

electrons with the fixed spin projection occupy only one 

conduction band and the incoming current converts into the 

pure spin current. The impact of the polarized electric current 

on the magnetization occurs through the exchange interaction 

between the corresponding spin polarized current and the 

controlled localized spins. The passage of the spin-polarized 

current into the controlled magnetic nanolayer causes the 

spin torque exerting the magnetization switching or 

precession. 

In the mentioned case, the transfer electron charges into 

the controlled magnetic layer results in thermal losses and 

increase of a power consumption. This imposes restrictions 

on contact sizes, which have to provide the threshold 

density of the spin current subject to the condition that the 

electric current does not exceed the value of an electrical 

breakdown. 
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Figure 1. Scheme of the spin-splitting of the band spectrum inducedby the 

exchange interaction 
ex

J , where ρ↑ and ρ↓  are the densities of electron 

states with different spin projections ( ,↑ ↓  ), (a), (b) and (c) are normal 

metal, ferromagnetic metal and ferromagnetic semimetal, respectively; M  is 

the magnetization vector. 

These problems can be avoided by the utilizing the spin-

orbit interaction for the spin polarization. In this case, the 

exchange interaction of the spin current with the localized 

spins is provided without passage of the charge current in the 

magnetic nanolayer [1, 3, 4]. 

The spin-orbit interaction in the two-dimensional systems 

with of the broken structure inversion symmetry, known as 

the Rashba spin-orbit interaction [1-3], is realized in the 

interfaces of the magnetic nanostructures with two-

dimensional electron properties and an interfacial potential 

drop. In a single-electron approximation, this interaction is 

described by the two-dimensional expression for a quasi-

relativistic correction [2]. Taking into account the electric 

field Ez ⋅E = z  along growth direction z , the corresponding 

Rashba Hamiltonian can be represented as 

[ ]R
R R RH

α 
 
 

= = ×
ℏ

B B z pσ,              (1) 

where ~
R

Ezα  is the Rashba parameter, R
B is the effective 

Rashba magnetic field which is dependent on the electron 

momentum p  and σ  is the vector of the Pauli spin 

matrices. The system (1) describes the characteristic 

properties of the Rashba spin-orbit interaction, although in 

realistic systems, the broken inversion symmetry causes 

distorts of the free electron wave functions near to atomic 

nuclei and consequently, it changes a spin-orbit interaction [1, 

2]. Due to (1), the effective Rashba field R
B exerts the spin 

precession of the conduction electrons. In addition, one leads 

to the symmetric spin splitting of the single-electron 

dispersion along the conduction electron momentum that 

experimentally observed in interfaces of magnetic 

nanostructures (Fig. 2). 

The spin-polarized electric current lies in the plane of the 

magnetic layer and one does not pass in the normal direction. 

Its interaction with the localized magnetization occurs 

through s-d-exchange interaction of the form sd sd
H J σ= ⋅S , 

where ~
sd c

J J , where c
J  is the input electric current and 

S is the localized spin. Thereby, the change of the incoming 

electric current results in the corresponding change of the 

magnetization. The application of an electric field along the 

vector z  results in changes of the Rashba parameter and 

magnetization dynamics, which is restricted by the 

magnetization switching. 

The spin polarization of the electric current can be caused 

also by SHE [12, 13], in which the passage of the electric 

current through heavy metal (for instance, Pt, Ta) with the 

strong spin-orbit interaction exerts the spin dependent 

transverse deviation of the electric current and the transverse 

pure spin current. The spin orientation of the latter is 

perpendicular to the electric current and the interface normal 

(Fig. 3). The electric current lies in the plane of the adjacent 

heavy metal nanolayer and do not pass into the magnetic 

nanolayer. This avoids the mentioned constraints on contact 

sizes in the magnetic nanostructure and leads to reduction of 

the threshold current densities and the energy consumption. 

 

Figure 2. The dispersion of the two-dimensional electron gas planar 

momentum vector
||

k ;
R

a is the Rashba parameter,
R

k  is previous to(on the 

left) and after (on the right) action of the Rashba spin-orbit interaction 

causing the spin-splitting along of the offset away from 
||

0k =  of the 

spectral curve to the initial position. 

 

Figure 3. SHE of the spin-orbit conversion of the input electric current j

into the spin current 
s

j  with the spin polarization denoted by arrows along 

the y  axis in the two-layered magnetic nanostructure. The spin current 

exerts on the magnetization M  of the magnetic layer, H is external 

magnetic field. 

The reciprocal of the SHE is the inverse spin Hall effect 

(ISHE), i.e. the conversion of an injected spin current into a 

traverse electric current or voltage. The SHE generates spin 

currents and spin accumulations. 

Together with the spin pumping effect originated from 

magnetic dynamics, SHE and ISHE provide the 

interconnection between the magnetic dynamics and the 

electric current. While the SHE generates spin currents and 

spin accumulations, the ISHE detects spin currents and can 

generate the spin-based electric power (see [3, 12, 13]). 

The additional transverse momentum component σ ⊥p in 

the spin Hall effect is proportional to the derivative of the 

spin-orbit interaction soH Vβ   = ∇ × p σ  with respect to the 
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momentum p , i.e. ~σ β⊥p  (see [13]). The solution of the 

corresponding Schrödinger Hamiltonian with the spin-orbit 

interaction gives that the action of the latter on the 

conduction electrons is equivalent to the action of the 

effective spin-dependent Lorentz force ~ [ ]σ σ×F v B , where 

v  is the electron velocity, and σσ   = ×B Α∇  is the spin-

dependent effective magnetic field. Here, totσ   ×∼Α Ε∇  is 

the effective magnetic potential with tot
Ε  being the total 

electric field [13]. The effective field σB  causes the 

transverse deviation of the electric current with generation of 

the transverse spin current. The charge current passes along 

the heavy metal nanolayer and the generated spin current 

passes into the controlled magnetic layer where owing the 

exchange interaction through the torque changes the 

magnetization dynamics. This can lead to the magnetization 

precession or switching. 

Features of the electron transport in the mentioned 

magnetic nanostructures are related to the spin dependent 

scattering on interfaces. The electron scattering on the normal 

metal (N)/magnetic metal (M) interface represents the special 

interest for magnetic heterostructures with the strong spin-

orbital interaction and SHE. In the ferromagnetic case, by 

scattering theory [19], the spin current 
(N|F)

sj  through an N|F 

interface (on the N side, flowing into F) can be expressed in 

terms of the F magnetization M  and the (vector) spin 

accumulation sNµ  in N: 

( ))
1

( ) ( ) ( )r sN sNsN j j - G Gie↑ ↓= − × × + ×j m m m m (mµ µ        (2) 

where m = M/ | M | , | |e e= − is the electron chargeand 

[ ]/

( )
( ) ( )cN cF sN sFe

G
j µ µ µ↑ ↓= ±↑ ↓ − ⋅ −m µ       (3) 

is the flow of electrons with spin-up and down along m

driven by the difference between effective charge chemical 

potentials in N and F ( )cN cFµ µ−  and the difference between 

spin accumulations at both sides of the interface 

( )sN sFµ⋅ −m µ . 

The spin-dependent conductance at the interface 

( ) 2

0( )
| |nm nm

nm
G G rδ ↑ ↓

↑ ↓ = −∑  
           (4) 

where 2

0 /eG = ℏ  is the conductance quantum, related to the 

spin-dependent reflection coefficient ( )

nmr
↑ ↓  corresponding to 

the electron transition between quantum states n  and m  in 

with spin projections ↑  and ↓ , respectively, in N. 

Conductance r
G and i

G in (4) are determined as real and 

imaginary parts of the spin-mixing conductance 

0 ) )( (nm nm nm
nm

G G r rδ ↑ ↓
↑↓

∗= −∑  
         (5) 

i.e., ( ) Re(Im)r iG G↑↓=  is related to spin-flip electron 

scattering at the interface. 

Due to (4), the longitudinal component of the spin current 

cal flow in a metallic magnetic.Its transverse components are 

absorbed causing at the interface the spin-transfer torque 

(STT) 

( | )

STT ( )
2

N F

s
e

= × ×
ℏ

T m m j               (6) 

acting on the magnetic exerting on the magnetic dynamics. 

Specially, large STT is realized in the current-in-plane 

(CIP) configuration with the spin current generated by the 

SHE [20-21] in the N layer and converted to a magnetization 

torque by the exchange interaction at the interface. This 

contributes a so-called “damping-like” torque proportional to 

r
G with symmetry identical to the exchange-mediated term, 

and a “field-like” torque proportional to i
G .The mentioned 

spin-orbit induced torque on the magnetic states in a normal 

metal has potential applications in spintronics including 

magnetic storage and communication technology. 

3. Robustness of Ferromagnetic 

Dynamics 

In ferromagnet/normal metal heterostructures, spin pumping 

and spin-transfer torques are two reciprocal processes that 

occur concomitantly. Their interplay introduces a dynamic 

feedback effect interconnecting energy dissipation channels of 

both magnetization and current. The solution of the spin 

diffusion process in the presence of the SHE in the NM shows 

that the dynamic feedback gives rise to a nonlinear magnetic 

damping that is crucial to sustain uniform steady-state 

oscillations of a spin Hall oscillator [23-25]. 

In ferromagnet (FM)/normal metal (NM) heterostructures, 

nonlocal effects arise because conduction electrons and 

magnetization reside in different materials and couple only at 

the interface. In this regime, spin pumping plays the role of 

spin electromotive force (SMF), which refers to the 

generation of spin current from a precession FM into the NM 

[25]. The pumped spin current is accompanied by a backflow 

of spin current [24, 25], which reacts on the FM through the 

spin transfer torque (STT). The combined effect of spin 

pumping and backflow-induced STT renormalizes the spin-

mixing conductance at the interface [17, 23]. However, in the 

presence of the SHE, spin pumping and spin backflow are 

also connected by the combined effect of the SHE and its 

inverse process ISHE, which forms a feedback loop as 

illustrated in Fig. 4. 

This additional feedback mechanism, proportional to the 

SH angle squared, 
2

sθ , that is essential to the electron 

transport in FM/NM heterostructures. Consequently, this 

feedback effect is important to the magnetization dynamics. 

In a reciprocal sense, if we apply an ac current density to the 

NM, the SHE will drive the magnetization precession via the 

STT, which in turn can pump spin current back into the NM 

and renormalize the resistivity by means of the ISHE. 

The feedback effect qualitatively modifies the dynamical 

behavior of an FM/NM heterostructure. The feedback 
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manifests as a novel nonlineardamping effect inthe 

magnetization dynamics. It enables uniform auto-oscillations 

 

Figure 4. In a FM/NMS bilayer, spin pumping and backflow are connected 

by the SHE and its inverseprocess (ISHE). 

of a spin Hall oscillator and prevents magnetic switching. 

The feedback effect gives rise to a spin Hall 

magnetoimpedance in the electron transport, which reduces 

to the observed SMR in the dc limit. 

Consider a FM/NM bilayer structure represented in Fig. 4 

with the layer thicknesses are M
d  and N

d , respectively. 

The coordinate system is chosen such that the magnetization 

direction at rest is along x , and the interface normal is along 
z . It is assumed that the FM is insulating (e.g., YIG), but the 

essential physics remains valid for a conducting FM since the 

feedback process takes place only on the NM side. 

In terms of the electrochemical potential 0
/ 2µ and the 

vector of spin accumulation µ  in the NM, the charge and 

spin current densities 
c

iJ  and 
s

(i )jJ , respectively, are 

described by the expression ((s)

(i ) 0( )2

c
ii j j

J
e

σ µ= − ∂ ±

)(k) (0)s ijk j kθ ε µ∂  with the transport direction i , the spin 

polarization direction j , the conductivity σ  and the 

electron charge e . In given device geometry, only the spin 

current flowing along z -direction is relevant, and so 
( )z,tµ = µ . Correspondingly, the spin (charge) current density 

reduces to a vector (c)z
J . The electron and spin dynamics in 

the NM are described by equations 

2

2

1

sf

D
t z τ

∂ ∂
= −

∂ ∂
µ µ µ                (7) 

02 sc ze
θ

σ µ ∂
 = + ×
 ∂ 

− zJ
µ∇               (8) 

0s 2 sze
θ

σ µ ∂
 = + ×
 ∂ 

− zJ
µ ∇               (9) 

Where D  is the diffusion constant, sfτ  is the spin-flip 

relaxation time. 

To solve the spin accumulation µ , we assume that the 

charge current density c
J is fixed by external circuit and is 

uniform in space. Besides that, we have two boundary 

conditions 0( ) 0s N sd ≡ =J J  and 

( )00

.
ss

G

e

 
 
  

= × × + ×ℏ
rJ m m m mµ        (10) 

where 0 (0)s =µ µ  and r
G  is the real part of the areal 

density of the spin-mixing conductance (the imaginary part is 

the real part of the areal density of the spin-mixing 

conductance (the imaginary part i
G  is neglected since 

r i
G G≫ ). On the right hand side of (10), the first term is the 

STT and the second term is the spin pumping. They are two 

fundamental ingredients bridging the electron (spin) transport 

in the NM with the magnetization dynamics of the FM. Due 

to the conservation of spin angular momentum, the spin 

current density 0s
J is absorbed by the FM, which is reflected 

by the Landau-Lifshitz-Gilbert (LLG) equation 

0 02
ex

eff s
s M

d d

dt dt eM d

γγ α= × × ℏm m
H m + m + J    (11) 

where γ  is the gyromagnetic ratio, ℏ  is the reduced Planck 

constant, s
M  is the saturation magnetization, 0

α  is the 

Gilbert damping constant, and eff
H  is the effective magnetic 

field. 

For typical FMs, the magnetization dynamics is much 

slower than the spin relaxation rate in the NM so that 

1sfrω ≪ . In this limit, the spin accumulation ( )z,tµ  adapts to 

the instantaneous magnetization orientation and is kept quasi-

equilibrium. As a result, the spin dynamics described by (7) 

reduces to a stationary spin diffusion process at any specified 

time. Retaining to second order in 
2

sθ  in (7) gives 

( )2
1 2 0 0( ) ( )

2
( ) s c s s sz

e
z zθ θ

λ
σ

  Λ × +Λ + × ×    
= z J J z z Jµ     (12) 

where sfDλ τ=  is the spin diffusion length, 

1
( ) sinh ( )z A zΛ = . / cosh (0)A , 2

( ) cosh ( ) / sinh (0)z B z BΛ = with 

)( ) (2
N

A z z d= − /2λ and ) /( ) (
N

B z z d λ= − . Here, it is 

suppressed the t  variable in ( )zµ  since its time dependence 

simply originates from c
J  and 0sJ . Combining (7)−(12) 

results in either eliminate the electron degrees of freedom 

( c
J  and 0sJ ) to derive an effective dynamics of the 

magnetization, or eliminatethe time derivative of the 

magnetization to get an effective magneto-transport of the 

electrons. These operations amount to invoking the dynamic 

feedback mechanism. 

Assume that c
J  is an applied dc charge current density. 

Then the total spin current density 0sJ  flowing into the FM 

in terms of the magnetization ( )tm , by which the LLG(10) 

will no longer involve any electron degrees of freedom, and 

the feedback effect is thus implemented mathematically. To 

this end, we combine (9) and (11) which gives two 

convoluted relations of 0sJ  and 0sµ . By means of iterations 

truncating at 
2

sθ order, we can solve 0s
J  as a function of cJ , 

( )m t  and its time derivative. Then we insert this c
J  into 

(10), which yields the effective magnetization dynamics 
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0)[( ] ( )eff s c sp

d d

dt dt
γ ω α α×= × × × + + ×m m m

m m
H m + z j 2 z

zrb

m
m

t t
α

 
 
 
 

∂∂× ×
∂ ∂
m

+ m + m z         (13) 

where cj  is the unite vector of cJ  and 

tanh
2

2 coth

s
r

s s
ss M

r

d
G

Jc deM d
G

λγ λω θ
σ λ λ

=
+

ℏ
       (14) 

is the strength of the STT (driven by cJ ) scaled in the 

frequency dimension. The two damping coefficients are 

described by the expression 

2 0(1) 2

( ) 2 1(2))2

( )

2 (

s r
sp fb

s M r

G

G
a

e M d

β σ
σ λ β

λθ γ
+

= ℏ
        (15) 

where coth( / )Ndβ λ= .Here, spa  describes the conventional 

enhanced damping from spin pumping with the spin 

backflow effects taken into account [25]; it is independent of 

the SHE. By contrast, the rba  term reflects the dynamic 

feedback realized by virtue of the combined effect of the 

SHE and its inverse process as schematically shown in Fig. 4. 

From (13), it is we see that this damping term is nonlinear in

⊥m : the component of M  transverse to the effective field

effH , the Gilbert damping term is linear in ⊥m . 

The feedback-induced nonlinear damping effect can be 

explained in the following way. If the magnetization 

precession is getting larger, it will trigger a chain reaction: 

first, the pumped spin current 0sJ  increases, then the spin 

diffusion becomes stronger (i.e., | |
z s

∂ µ  gets larger). This 

will necessarily lead to a larger 0
µ∇ in the NM according to 

(8). Finally, the change of the emf will feed back into 0s
J  

according to (9), preventing its further increase. Therefore, 

the growing magnetization precession is inhibited. The 

entire process realizes a negative feedback and respects 

Lenz's law. 

4. Spin Currents in AF Nanostructures 

The spin pumping and spin-transfer torque in AF based 

nanostructures represent the combined effect of their action 

in each of magnetic sublattices of the AF coupled by a strong 

exchange interaction. Magnetization dynamics of these 

coupled sublattices leads to an AF order ( l ) dynamics 

manifesting as precession and switching. Similarly, to the 

magnetization in the ferromagnetic case, the AF order 

precession generates the spin pumping current, which via the 

ISHE in adjacent nonmagnetic nanolayers can converts into 

the transverse charge current. Thereby, the influence of the 

AF dynamics on the charge current in AF nanostructures is 

realized [26]. The inverse impact of the charge current on the 

AF precession is realized via the spin Hall effect of the 

conversation of the charge current into the transverse spin 

current which owing to the exchange interaction exerts the 

spin transfer torque on the AF order precession. 

Characteristic features of the AF dynamics and its 

interconnection with the spin currents in the form of the 

precession-induced spin pump and spin transfer torque is 

manifested in the AF two-sublattice model with an easy axis 

directed along the axis z , and magnetization unite vectors 

1m  and 2m . These vectors are driven by the exchange 

interaction, the anisotropy, and a magnetic field in the z  

direction. In units of frequency, they are represented by Eω ,

Aω , and 0H Hω γ= , respectively. The equations of motion in 

a free precession approximation are 

[ ]

[ ]
1 1 2

2 2 1

- ( )

- ( )

E E H

E E H

ω ω ω

ω ω ω

⋅
= × +

⋅
= × −

m m m  z ,

m m m  z ,

        (16) 

where the effective field causing the magnetization 

precession in a magnetic sublattice contains the contribution 

from the exchange interaction with an adjacent magnetic 

sublattice. In linear response, when 1(2) 1(2) exp( )i tω⊥=m z + m  

at 1⊥ ≪m  the resonance frequencies are then 

( 2 )H R H A A Eω ω ω ω ω ω ω= ± = ± ±       (17) 

where the two corresponding eigenmodes are characterized 

by different chiralities. The left-handed (right-handed) mode, 

both 1m and 2m  undergo a circular clockwise 

(counterclockwise) precession with π  phase difference. In 

the absence of magnetic field, viz. 0Hω = , the two modes are 

degenerate. 

Since without the AF interaction, spin current pumped 

from each of two magnetic sublattices is proportional to

1(2) 1(2)t
× ∂m m , the total pumped spin current is roughly 

proportional to t
× ∂l l , where 2 1

( ) / 2−l = m m  denotes the 

staggered field. 

The cone angles of 1m and 2m  are different: in the left-

handed (right-handed) mode, 2 1/θ θ η= , where 

( )2

1 /A Eη ω ω≈ + , so that a small magnetization 

1 2( + ) / 2m = m m  is induced in the AF dynamics state. 

The spin currents in AF nanostructure determined by 

mixed scattering channels associated with different 

sublattices on a N/AF. Typical AF materials are insulators 

and incident electrons from the normal metal cannot 

penetrate far. Only a single atomic layer of AF directly 

connected to N suffices to describe the dominant contribution 

to interface scattering. Therefore, the essential physics is 

captured by modeling the N/AF interface as being semi-

infinite in the transport direction and infinite in the transverse 

direction. 
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In the nearest-neighbor tight-binding model on a cubic 

lattice, in terms of the ratio the scattering matrix in the linear 

approximation in the small m is described by the expression 

0 1 0 3 0[ ( ) ( )]S S S Sϖτ σ τ τ= + + ∆ ⋅ + ⋅l mσ σ      (18) 

where 1,2,3τ  are pseudospin Pauli matrices for sublattice 

degree of freedom, σ  are the vector of spin Pauli matrices, 

and 0τ  and 0σ  are identity matrices. The last two terms 

of(18) with a common coefficient S∆  are spin dependent 

and represent umklapp and normal scatterings, respectively. 

Pumping currents are related to the coefficients in (18) which 

dependent on the above-mentioned spin-mixing conductance. 

This conductance is determined by the scattering matrices 

with spin flip on the N/AF interface. 

Although the AF resonance frequency attains the THz 

region (1 ∼ 10 meV), the motion of the staggered field 

remains adiabatic. The spin eigenstates and the scattering 

matrix (18) adiabatically adapt to the instantaneous 

configuration of AFs. Regarding the staggered field l  and 

the magnetization m  as two independent adiabatic 

parameters [24, 27, 28], the pumped spin current sI  with the 

scattering matrix(18) can be obtained in the form 

. . .
( )r is

e
G G
 
 
  

= × + × −
ℏ

I l l m m m             (19) 

This expression arises from a coherent sum of two 

independent spin pumping contributions by 1m  and 2m . 

Due to the mixing of scattering channels from different 

magnetic sublattices, the spin-mixing conductance rG and iG

are different from those of F. Moreover, AF dynamics is 

much faster than F that corresponds to a stronger spin 

pumping. 

By taking a time average of(19) over one period of 

oscillation, only the first two terms survive and contribute to 

the dc component of spin current 
dc

sI . Despite that ≪| m | | l | , 

the contribution of 
.

×m m
to

dc

sI  can be comparable to that of 

⋅
×l l . This is because 

dc

sI is proportional to the cone angle 

2θ  of precessionand the cone angle associated with the 

staggered field is much smaller than the one associated with 

the magnetization, 0lθ ≈ but / 2mθ π≈ . 

From the sublattice degree of freedom involved in the AF 

dynamics it is follows a staggered spin pumping. A staggered 

spin current represents the imbalance between the spin 

current carried by the two sublattices. It has three 

components 
( )i

ssI ( i =1,2,3) from which the component 

(3)
. . .

( )ss r i

e
G G= × + × −

ℏ
I l m m l l         (20) 

only survives. Elastic scattering in the normal metal will 

destroy any staggered spin accumulation, which decays on 

the time scale of / tℏ . Therefore, the staggered spin current 

is defined within a distance of the mean free path away from 

the interface. 

The reciprocal effect of spin pumping is STT, which 

describes the back action that a spin current exerts on the AF. 

In linear response, an AF is driven by two thermodynamic 

forces l F /δ δf = - l and m - F /δ δf = m  (energy dimension), 

where 

2 20

2
( ) -

2
l

i H
H i

a
F dv

a
ω

ω
ω ω 
 + ∂ ⋅∑
  

= ∫
ℏ

l H mm     (21) 

is the free energy. Here 0 2A Eω ω ω= +  and lω  are the 

homogeneous and inhomogeneous exchange frequencies, 

respectively. Enforced by = 0⋅m l and 2
( ) 1≈l , the symmetry 

allowed dynamics described by the system [25, 26] 

3
( / ) ma v

⋅
×ℏ l = f l                (22a) 

3
( / ) l ma v

⋅
× ×ℏm = f l + f m ,         (22b) 

Where v  is the system volume. Inserting them into (20) 

gives the response of the spin current to mf  and lf . 

Invoking the Onsager reciprocity relation, we derive the 

response of l  and m  to a given spin voltage sV  in the 

normal metal, which are identified as two STT terms lT and 

mT . To linear order in m  

[ ]
3

3

( ) ,

( ),

l r s i s

m r s

a
T G G

ev

a
T G

ev

= − × × − ×

= − × ×

l m V l V

n m V

      (23) 

that treats STTs on the two sublattices as completely 

independent. 

In solving the AF dynamics, it is instructive to eliminate 
m  and derive a closed equation of motion in terms of l  

alone [27-30]. In the linear approximation in sV , m , and t
∂ l

the effective dynamics is described by the equation 

3
2 0

0

.. .
( ) r

R s

a G

ev

ω
αω ω ⊥× + + = × ×l l l l l l V        (24) 

where α  is the Gilbert damping constant, and ⊥l are 

perpendicular components of l  with respect to the easy axis. 

Since the STT only acts on the interface fora thin AF film a 

possible nonuniform motion of l is disregarded.. 

At small enough sV  collinear with the easy axis, the 

solution for a spectrum of (24) characterizes by a negative 

imaginary part of the frequency ω  so that any perturbed 

motion will decay exponentially in time and the system is 

stable. However, a sufficiently large sV  flips the sign Imω , 

which makes the system unstable and marks the onset of 

uniform AF excitation. The condition Im[ ] 0ω =  determines 

the threshold spin voltage 
3

( ) / ( )
th

s l rV ev a Gα ω= ± , where 

( )+ −  corresponds to the excitation of the right-handed (left-

handed) mode. 
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5. Dynamic Feedback in AF/SH 

Structures 

In the framework the current-induced dynamics of 

insulating antiferromagnets in a spin Hall geometry, 

sufficiently large in-plane currents perpendicular to the Néel 

AF order can trigger spontaneous oscillations at frequencies 

between the acoustic and the optical eigenmodes [17, 23, 26]. 

The direction of the driving current determines the chirality 

of the excitation. When the current exceeds a threshold, the 

combined effect of current-induced torques and spin pumping 

introduces a dynamic feedback that sustains steady-state 

oscillations with amplitudes controllable via the applied 

current. This permits to obtain the SH nano-oscillator with 

operating frequencies in THz range. 

When an applied STT compensates the magnetic damping, 

the magnetization becomes unstable: it either switches to 

another direction or evolves into a steady-state oscillation. 

While the former improves writing operations in magnetic 

memory devices, the latter enables sustainable ac signal 

generation from dc inputs, giving rise to spin-torque 

oscillators (STOs) [31, 32]. In ferromagnets, currents or 

magnetic fields can tune the STO output frequency from the 

MHz to the GHz regime. 

STOs can potentially be operated at much higher THz 

frequencies when antiferromagnets (AFs) replace 

ferromagnets. It is possibly owing to the THz range of the 

eigenfrequencies of typical AFs and possibility of 

spontaneous excitations of an AF by an anti-damping STTs. 

While most AFs are insulators where STTs cannot be 

operated by passing through a current, the SHE can produce 

STTs even when electrons do not flow through the magnet 

[31]. Therefore, integrating STOs with the SHE paves the 

way towards low-dissipation spin Hall nanooscillators 

(SHNOs) [6]. 

However, to realize AF-based SHNOs, current-induced 

excitations should not grow indefinitely, but instead should 

evolve into steady-state oscillations and generate a 

substantial ac output. Although an AF under the action of an 

anti-damping STT does not suffer magnetic switching, its 

Néel AF vector experiences either no dynamics or a right-

angle precession around the direction of the spin 

accumulation [18]. Since the oscillation amplitude is not 

continuously tunable via the applied current, the device does 

not meet the requirements of an SHNO. 

Steady-state oscillations are realizable in ferromagnetic 

STOs for the following reasons. In a spin-valve device, the 

angle dependence of the Gilbert damping and that of the anti-

damping STT differ. As a result, when the driving current is 

above the threshold, there exists a unique angle where the 

two competing effects compensate. Then, a steady-state 

oscillation is stabilized at that angle. However, this features 

no longer active where the SHE creates the anti-damping 

STT. Therefore, one needs to introduce alternative 

mechanisms to prevent a spontaneous excitation from 

growing into magnetic switching. 

Solution of the mentioned problem is based on the use of a 

feedback mechanism [17] that is realizable in an AF/heavy-

metal heterostructure. The feedback effect originates from 

the combined effect of the SHE and its reverse process that 

connects the spin pumping with the spin backflow [33, 34], 

which is independent of the dipolar interaction. The threshold 

of spontaneous excitations is determined via solving the AF 

order dynamics in the linear response regime. The correlation 

between the threshold and a current density is related to the 

SHE in the heavy metal. The feedback is indispensable to 

sustain uniform auto-oscillations. Herewith, THz SHNO 

generates a substantial ac voltage output with its amplitude 

continuously tunable via the applied dc current. 

Characteristic properties of magnetic dynamics of the AF 

in device geometry in Fig. 5 can be described in the 

framework of two-sublattice crystal structure with the 

magnetizations vectors 1m and 2m . The magnetic dynamics 

is characterized by the AF vector ( )1 2l = m -m / 2  and the small 

magnetization ( )1 2m = m +m / 2 , and angular frequencies ω⊥ ,

||ω  and Eω corresponding to the hard axis, easy plane 

anisotropy and the Heisenberg exchange interaction, 

respectively. In the macrospin description, the free energy is 

( )2 2 2
3

1,2

( ) +( )
2

i
i i

i

F
ωω

=
∑= − −ℏ ℏl r l r m       (25) 

where 3 1 2 ||
( ), ( ) ( )Eω ω ω ω ω ω ω⊥ ⊥= + =  and 1(2)

( )=r x z , which 

defines thermodynamic forces, ( ) / ( )l m F= −∂ ∂ℏf l m . The 

coupled equations of motion are 

2

. . .
( ) ( )

l
α⋅= × + × +l f m, l + m l l m T       (26a) 

1

. . .
( ) ( )

m
α⋅= × + × +m f m, l + m m l l T      (26b) 

where 1(2) ( ) ( )
( , )

m l l m
= × ×f f f (where × denotes the vector 

multiplication), α  is the Gilbert damping constant, andthe 

STTs given by [13,21] 

( ) ( ),

( ) ( ).

m s s

l s s

= × × × ×

= × × × ×

T l l + m m

T l m + m l

ω ω
ω ω

       (27) 

Here the STT strength is determines via the vector of spin 

accumulation sω . 

The vector decomposition exp( )i tω
⊥

l = x + l  in (26) results 

in the eigenfrequencies expression 

1/2
2 2 2' 4E E sE

i ω ω ω ω ωω ω α ⊥±
 ± −  

= +        (28) 

where 
2

||
' 2ω ω ω α⊥= + − ,+ (-) denotes the optical (acoustic) 

mode. As sω increase, the real parts Re[ ]ω
+  and Re[ ]ω

−

approach each other until they become degenerate at

/ 2sω ω⊥= . The imaginary parts Im[ ]ω
+  and Im[ ]ω

−  remain 

degenerate and unaffectedfor / 2sω ω⊥< . When / 2sω ω⊥> , 
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Im[ ]ω
+ ( Im[ ]ω

− ) reduces (grows) rapidly, indicating that the 

damping is diminished (enhanced) by the STT. 

 

Figure 5. An insulating AF/HM heterostructure. The applied dc current 

density cJ  drives the AF via the SHE. The dynamics of the AF pumps spin 

current back into N, and converts into electric field via the ISHE, which is 

monitored by two voltmeters. 

At the threshold [18], 

2
2

||(2 )
4

th
Es

ωω α ω ω ω⊥
⊥= + +           (29) 

Im[ ]ω
+  vanishes, which marks the onset of spontaneous 

excitation of the optical mode and the breakdown of the 

linear response approximation. The uniaxial symmetry 

enforces that Im[ ]ω
+  also vanishes for the threshold so that 

the auto-oscillation can be triggered by a reversed current as 

well. 

In the absence of the hard-axis anisotropy, the threshold 

(29) is linear in α , so the anti-damping effect occurs when 

the STT is turned on. However, in the general case where

0ω
⊥

> , the anti-damping effect appears only when 

/ 2
s

ω ω⊥> . Vectors 1
m  and 2

m always exhibit opposite 

chiralities, i.e., they rotates counterclockwise (clock-wise). 

However, at the degenerate point / 2
s

ω ω⊥= , the chirality of 

1m  ( 2m ) in the optical (acoustic) mode reverses. At

/ 2
s

ω ω⊥> , both 1m  and 2m , hence the Néel vector l , all 

acquire the same chirality. At the threshold th

s
ω , the excited 

optical mode is right-handed. If sω  changes sign, the optical 

mode is still excited, but its chirality becomes left-handed. 

These suggest that the direction of the current determines the 

chirality of the excitation. 

In the considered two-layered nanostructure, insulating 

AF/heavy normal metal (HM) with strong spin-orbit 

coupling (Fig. 5) a current density c
J  is applied along the 

y -direction perpendicularly to the AF vector l . The SHE in 

the HM generates anti-damping STTs to drive the AF vector 

dynamics, which in turn pumps spin current back into the 

HM. The pumped spin current converts into a charge 

voltage due to the inverse SHE. The spin diffusion equation 

in the presence of the SHE under boundary conditions 

involving both spin-pumping and STT, results in the 

expression 

2

3

( coth )

2 tanh

N
M r

th th

c c
N

s r

G
d

d h +2 e
J

d
eG

σ λ λω
θ α λ λ

=         (30) 

describing the dependence of the a critical current density on 

the threshold STT (29), the spin Hall angle s
θ , and the areal 

density of transverse mixing conductance r
G . From (30) it is 

follows that the critical current density 
th

cJ  can be lowered by 

reducing (increasing) the thickness of the AF Md  (HM Nd ). 

The sustained steady-state oscillation of the AF vector in 

the mentioned nanostructure can be realized via the dynamic 

feedback effect. The pumped spin current from a precessing 

AF vector into the HM experiences a backflow [33, 34]. In 

HMs, however, the spin pumping and the spin backflow are 

also connected via the combined effect of the SHE and its 

inverse process, which feeds the Néel vector dynamics back 

into itself. In ferromagnets, such a feedback mechanism 

manifests as a nonlinear damping effect in the magnetization 

dynamics. Similar feedback-induced damping effect can 

occur for AFs. In this case, the pumped spin current into the 

HM converts into an electric field E  due to ISHE. 

According to Ohm’s law, 

( / 2 )
c s z s

eσ θ σ= − × ∂J E z µ         (31) 

where s
µ  is the spin accumulation in the HM. At the fixed 

current density c
J  through external circuits, a change of the 

electric field E  necessarily leads to a change of the spin 

accumulation. Subsequently, the change of s
µ  diffuses and 

generates an additional spin current, which will finally 

deliver the influence of spin pumping back into the AF vector 

through STTs. Closing such a feedback loop results in a 

feedback torque. should be added to (27) as 

2
..

( )zzFB NL l lα
 
 
  

= × − ×T l l z l            (32) 

where the feedback coefficient is 

2 2
2 3

2

2 coth

( 2 coth )

N
r

s
NL

NM
r

d

d

e G
a

d h e G

θ λ

λ

λα
σ λ

=
+

ℏ

       (33) 

While the feedback effect seems to be a higher order effect 

as NLa is proportional to 
2

sθ , it can be significantly enhanced 

by searching for materials with large s
θ . The feedback-

induced nonlinear damping is a critical ingredient because it 

dramatically modifies the dynamical behavior of an SHNO 

using AF. 

A salient feature of the considered stable oscillation phase 

is that the applied DC current density cJ  controls the output 

power and that the output power is substantial that is 

indispensable for an SHNO. In the stable oscillation phase, 

the actual frequency output lies between the acoustic and the 

optical modes. The AC voltage output is determined by ISHE 

and the spin pumping. For a fixed cJ  the total electric field 
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/c σ + ∆E = J E  includes a time varying part 

2

t h

coth

2
an .

( )
2

N
r

s

N
N r

d

d

eG

d h e G

λ

λ

λθ

σ λ−
∆ × ×

ℏ
E = l l z        (34) 

A time average results in the effective value of the 

components xE  and yE  which are appreciably large in the 

stable oscillation phase. 

6. SH Magnetoresistance in 

Nanostructures 

Interconnection between the magnetic dynamics in 

magnetic layers and the charge current in the adjacent 

nonmagnetic heavy metal (HM) nanolayers with the strong 

spin-orbit interaction can exhibit via the so-called the spin 

Hall magnetoresistance effect (SME) [35, 36] of the 

magnetic-induced change of the charge current. The impact 

of the magnetic dynamics on the charge current in 

nonmagnetic layers is related to the conversion of the spin 

current magnetic induced in HM into the transverse charge 

current by the ISHE. The impact of the charge current on the 

magnetic states occurs via its SHE conversion into the 

transverse spin accumulation and the spin torque force. 

Especially clearly, SME is exhibited in the case of 

insulating magnetic (IM) nanolayer (specifically, yttrium iron 

garnet (YIG)) adjusting to the HM nanolayer (specifically, Pt) 

possessing by the strong enough spin-orbit interaction. In 

such the nanostructure the change in resistance due to SMR 

is related to a combination of the SHE and ISHE, acting 

simultaneously [37, 38]. When a charge-current eJ  is sent 

through a Pt nanolayer, a transverse spin-current sJ  is 

generated by the SHE following e sσ∝ ×J J , where σ  is the 

polarization direction of the spin-current. Part of this created 

spin-current is directed towards the interface as is shown in 

Fig. 6. 

 

Figure 6. Schematic of the passage of spin and charge currents at the SMR 

in a YIG/Pt nanostructure. (a) When the magnetization M  YIG is 

perpendicular to the spin polarization σ  of the spin accumulation created 

in the Pt by the SHE, the spin accumulation will be absorbed ( absJ ) by the 

localized moments in the YIG. (b) For M  parallel to σ , the spin 

accumulation cannot be absorbed, which results in a reflected spin-current 

back into the Pt, where an additional charge-current reflJ will be created by 

the ISHE. 

At the interface, the electrons in the Pt will interact with 

the localized moments in the YIG. Depending on the 

magnetization ( M ) direction of the YIG, electron spins will 

be absorbed ( σ⊥M ) or reflected ( σM || ). By changing the 

direction of the magnetization of the YIG, the polarization 

direction of the reflected spins, and thus the direction of the 

additional created charge-current, can be controlled. A 

charge-current with a component in the direction 

perpendicular to eJ  can also be created, which generates a 

transverse voltage. 

In a diffusion approximation for both magnetic and HM 

nanolayers the spin and charge currents are expressed in 

terms of gradients of charge and spin accumulations (or spin-

dependent electrochemical potentials and densities). The 

charge current density is the expectation value of the current 

operator ( ) / 2e n nj = v + v , where e  is the electron charge, n  

is the electron density, and v  is the velocity operator. For a 

normal metal with constant density Nn  and rift velocity Nv , 

eN N Nenj = v . The spin current in the non-relativistic limit is 

the second-order tensor 

( )
2

= , ,
T

sx sy szsN

e σ σ
↔

⊗ ⊗+j  = j j j j j      (35) 

where σ  is the vector of Pauli spin matrices, and < ⋅ ⋅ ⋅ >  

denotes an expectation value. The row vectors 

( ) / 2si i ien σ σ=j v + v  are the spin current densities polarized in 

the i -direction. In metallic ferromagnets with homogenous 

texture, the average spin current is projected along the unit 

vector of the magnetization direction m , so the charge 

current and spin current tensor have the form 

( + ),

( - )

cF F F F F

sFsF F F

= e n n↑ ↑ ↓ ↓
↔

↑ ↓⊗ ⊗

j v v

j  = j m = j j m,
         (36) 

where cFj  is the spin current density direction vector, “ ⊗ ” 

denotes that the polarization is locked along m . In contrast 

to the charge current, the spin current is not conserved in the 

presence of the spin-orbit interaction and non-collinear 

magnetizations, leading to spin-transfer to the lattice or 

magnetization, respectively. 

Inthe diffusion approach for the two-current model 

currents close to the interface of the heterostructure are 

determined via gradients of the spin-dependent chemical 

potentials Fςµ , ( / )F F eς ςσ= −j Fςµ×∇ , where ( , )ς = ↑ ↓  

represents the spin direction along of the magnetization and 

Fςσ  is the spin-dependent conductivity. The charge and spin 

currents cF F F
= ↑ ↓j j + j and sF F F

= ↑ ↓j j - j , respectively, are 

expressed via charge and spin chemical potentials 

( ) / 2cF F F
µ µ µ↑ ↓= + and ( ) / 2sF F F

µ µ µ↑ ↓= − , respectively, in 

the form of the form of Ohm’s law [37] 

( ) 1( ) (1)
F

cF cFcF sF e
P P

σ
µ µ = − + j ∇ ∇       (37) 

Where ( ) / ( )
F F F F

P σ σ σ σ↑ ↑ ↑ ↑= − +  is the conductance spin 

polarization, F F F
σ σ σ↑ ↓= +  is the total conductivity. The 

mentioned potentials are determined by the diffusion 

equations 
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2 2

2
, ( / 2) 0sF

sF cF sF

F

P
µ

µ µ µ
λ

= + =∇ ∇       (38) 

where the spin-flip diffusion length 2 2 1/2
( )F F F

λ λ λ− − −
↑ ↓= +  is 

expressed in terms of the spin-diffusion length 

,F F sf FDς ς ςλ τ=  for each spin ( ,f sFςτ is the spin-dependent 

spin-flip time). The spin-dependent charge diffusion constant 
2

/ 3F F FD vς ς ςτ=  depends on the spin-dependent relaxation 

time Fςτ  and Fermi velocity vζ . Solutions of (38), 

corresponding to boundary conditions at interface, due to (37) 

determine the charge and spin currents. 

In normal metals, the induced spin accumulations is 

represented by the (position dependent) vector 

( , , ) 1
T

sN sx sy sz cNµ µ µ µ= −µ , components of which together with 

the charge chemical potential obey the diffusion equation system 

2 2

2
, 0si

si cN

µ
µ µ

λ
= =∇ ∇          (39) 

Without the SHE, charge and spin currents express by the 

system 

,cN si
cN cN si si

e e

σ σ
µ µ= − = −j j∇ ∇       (40) 

The spin polarization in the case of the NM layers has 

arbitrary direction in contrast to the case of the magnetic 

layers. 

In the considered case of the bilayer nanostructure HM/FI 

(FI denotes insulating magnetic) represented in Fig. 7, in 

which the charge current flow in the metal parallel to the 

applied electric field E  and the SHE generate a spin 

accumulation, generalization of the Ohm’s law (37) can be 

represented by the system [19] 

)( 1

2 i

N
si S i cN sxe

σ θ µ µ×= +j x ∇ ∇         (41) 

2 i

SN
cN cN i sx

ie

σ θ
µ µ+= ×∑

 



j x∇ ∇        (42) 

Where ( , , )
T

sN sx sy sz cNµ µ µ µ= − 1µ  is the spin accumulation, 

i.e. the spin-dependent chemical potential relative to the 

charge chemical potential cN eµ ϕ= , Nσ  is the electric 

conductivity, 

 

Fig. 7. The N|FI bilayer structure with the charge flow along an electric 

field E . 

and “×” denotes the vector cross product operating on the 

gradients of the spin-dependent chemical potentials. The 

SHE is represented by the first term in (6.7) that generates 

the spin currents parallel to the applied electric field xEE = x

(Fig. 7). The ISHE is governed by the second term in (42) 

that connects the gradients of the spin accumulations to the 

charge current density. 

According to (41) and (42), the spin current in N consists 

of conventional diffusion and spin Hall drift contributions. 

The spin current density flowing in the z -direction is 

described by the expression 

0
2

SHN
sz z sN sj

e

σ
= − −j yµ∇          (43) 

where 0

SH

s S N xj Eθ σ=  is the bare spin Hall current, i.e., the 

spin current generated directly by the SHE. Due to the 

boundary conditions (z)szj  is continuous at the interfaces 

( ,0Nz d= ). The spin current density at a vacuum interface 

( Nz d= ) vanishes, while at the magnetic interface ( 0z = ), it 

is governed by the spin accumulation and spin-mixing 

conductance according to (2),
(N|F)

(0)sz s= −j j . Due to (39) 

with mentioned boundary conditions, the spin accumulation 

due describes by the relation 

0

( ) sinh ( ) 2 cosh ( )

sinh (0) sinh (0)

sN

s

z A z B z

A Bµ

λ
−= − y

µ [ ] ( )( )Re ( Im Gϕ ↑↓× × × + × )m m y m y  (44) 

where ( )A z  and ( )B z  were defined in (12), and 

(( ) Nz zϕ σ= 1
2 coth (2 )

N
z B dλ −

+ ,
0

sµ  is the spin accumulation at 

the interface in the absence of spin-transfer. From (44) it 

follows the distribution spin current in N 

( )1 2
0

( )
( ) 1 ( ) ( )

z

s

SH

s

z
z z G

j
ϕ ↑↓∆ − ∆ R

j
y  -=     (45) 

where 

1 2
( ) ( )

cosh ( ) 2 tanh (0)sinh ( )
,

cosh (0) sinh (0)
z z

A z A B z

A B

λ
∆ = ∆ = , 

R  denotes the expression emphasized by squared brackets in 

(44). The spin current at the interface N|F vanishes when the 

magnetization is along y . The spin current at the interface and 

the torque on the magnetization are activated, while the spin 

accumulation is dissipated under rotation of the magnetization 

from y to x , the spin current at the interface N|F, while the 

spin accumulation is dissipated correspondently. The x -

components of both spin accumulation and spin current vanish 

when the magnetization is along x and y , and are largest at
( ) / 2x + y . 

The ISHE drives a change current in the x y−  plane by 

the diffusion spin current component flowing along y -

direction. The total longitudinal (along x ) and transverse 

(along y ) charge currents [37] 

2 2
21

( )
( ) (1 ) ( )Re ( )cx

yS

N x

j z
z m z G

E
θ ϕ

σ

 ↑↓




1 + Λ + − Λ=    (46) 



19 Andrii Korostil and Mykola Krupa: Spin-Orbit Induced Dynamics in Multilayer Nanostructures  

 

2 2

2
Re Im

( )
(1 ) ( )

cy

x y zS y

N x

m m m
E

j z
m Gθ ϕ

σ ↑↓
 − Λ −=    (47) 

describe the magnetization dependence of the charge current. 

Averaging (46) and (47) over the thickness z results in the 

corresponding electrical resistances, which in the first-order 

approximation in
2

Sθ describe the magnetization dependence [37] 

22 (1 ) tanh (0)tanh (0)

(0) 2
1 Re ( )

ySH
x

m AA

A
G

λθρ ρ ϕ ↑↓

 
 
 
 

−
= − −   (48) 

( )
2 2

Re Im
tanh (0)

(0)
( )S

x y zy

A

A
m m m G

θ λρ ϕ ↑↓= − −   (49) 

Here, when the N layer thickness increases relatively to the 

spin-flip diffusion length ( / 0Ndλ → ) (0) 0A →  and SMR 

effect vanishes. The SMR magnitude is proportional to the 

second power of the spin Hall angle) and it is related to the 

spin-mixing conductance) at the interface which is 

determined by the spin-dependent electron scattering. 
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